А.А. Корнеев
Москва. 3 октября 1993 г Исследование цифр «1, 3, 7» в числах
В этой статье представлены мои ранние способы исследования цифр. В частности, цифр «1,3,7» объединённых в число 137; и ещё один (дополнительный) способ исследования внутренней структуры чисел, в котором изюминкой является применение простых дробей. Эти же способы пригодны и для изучения знаменитой константы «317», которую ввел в научный оборот Велимир Хлебников в своей Теории Времени. Однако, изложу всё по порядку. Сущность способа заключается в следующих шагах и действиях: Шаг 1. Выбираем исследуемое число и устанавливаем все его изоморфнве образы (далее – изоморфы), т.е. пишем все комбинации с перестановками цифр, имеющимися в данном числе. Получаем исходный набор чисел для дальнейших исследований. Шаг 2. Вычисляем нумерологический корень исходного числа (он будет одинаков и для чисел - изоморфов). Шаг 3. Каждое из полученных в наборе чисел делим на число 11, что эзотерически означает сопоставление этого числа с Абсолютом. (Мы как бы устраеваем исследуемому числе «очную ставку» с самим Абсолютом, которая должна «высветить» всю подноготную этого числа. Для больших чисел полезно брать в качестве «делителя» на «11», а число «111», соответствующее Вселенной. Шаг 4. Полученные десятичные дроби (используем калькулятор) НЕОБХОДИМО выразить (преобразовать) в виде ПРОСТЫХ ДРОБЕЙ. Это очень важно, поскольку именно (и только!) простые дроби выявляют скрытых участников процессов взаимодействия между числами. Шаг 5. Числа – изоморфы (в виде целых и простых дробных частей) располагаем на Лимбе такой же кратности, что и число изоморфов. Если для исходного 3-х значного числа мы получаем всего 6 изоморфов, то и лимб для их отображения будет иметь всего 6 точек на окружности (Лимб-6) Шаг 6. Методом подбора и предварительных расчётов расставляем числа-изоморфы на Лимбе так, чтобы добиться симметричного числового баланса между ними и относительно оси общей симметрии Шаг 7. Рисуем окончательную картинку Лимба с расставленными на его точках числами и начинаем анализировать эту картинку и делать далеко идущие выводы J…. В качестве ОБЪЕКТА мы будем исследовать весьма примечательное число 137, – за которым одни исследователи усматривают т.н. «Константу тонкой структуры Вселенной», другие – нумерологическое число Смерти, третьи - образы из пушкинской «Пиковой дамы» - карты: Тройку, Семёрку и Туза. Вот мы и посмотрим на данное число, в частности, через призму нового способа. Число 137 имеет следующий набор изоморф: 137, 173, 317, 371, 713, 731 (одно из чисел-изоморф – Хлебниковская константа – 317) Нарисуем таблицу, в которой было бы удобно отображать дальнейшие результаты.
После группировки чисел по парам получим 3 такие пары чисел: Общая сумма всех чисел (по-парных): 310 + 544 + 1030 = 1884 –> {21} –> [3]; Баланс сумм этих пар чисел (левый и правый) выполняется только в таком раскладе: «Левые»: 137 + 371 + 713 = 1221; «Правые»: 731 + 317 + 173 = 1221; Обратим внимание, что: 1221 : 11 = 111 (!), где 111 – число Вселенной. Вычисление баланса позволяет перейти к построениям на Лимбе-6. И здесь возможно несколько способов расстановки чисел на лимбе:
Вот, например, расположение по признаку баланса правых и левых:
А это (ниже) - пример оцифровки по принципу зеркальности:
В одном из своих исследований я нашёл эмпирическую формулу представления для чисел – изоморфов. Согласно этой формуле для числа 137 можно записать следующее соотношение: Эта формула также позволяет произвести оцифровку лимба. Как можно увидеть (Рис.3) – здесь осуществляется группировка чисел попарно, а точнее по признаку их зеркальности. Остановимся на одном из вариантов более детально. На Рис.3 (ниже) показана оцифровка, где связи между числами на лимбе показаны в виде разности значений пар чисел
А на Рис.4 (см. ниже) все числа и величины сумм пар этих же чисел разделены на число «11» и представлены в виде целых чисел с простой дробью (итог – выделен красным цветом) на линиях, соединяющих пары чисел.
И, наконец, опираясь на обнаруженное свойство равенства одной половины чисел – другой половине, построим новый лимб, где объёдиним эти тройки чисел геометрически в треугольники, которые имеют противоположную ориентацию вершин. При этом прибегнем к ещё одной маленькой нумерологической хитрости, которую я называю: НЕПОЛНОЕ НУМЕРОЛОГИЧЕСКОЕ СОКРАЩЕНИЕ. Суть его в том, чтобы представить числа из нашего исследуемого набора в несколько иной форме: Конкретно: 137 a (13)7 a 47;317 –> (31)7; 371 –> (37)1; 731 –> (73)1; 713 –> (71)3; 173 –> (17)3;
Цифры в скобках сложим нумерологически и получим такие соответствия между исходными числами и новыми, синтезированными: 137 –> «47»;317 –> «47»; 371 –> «101»; 731 –> «101»: 713 –> «83»; 173 –> «83»; Теперь, благодаря «неполному нумерологическому сокращению» мы получаем возможность проставить некий хитрый индекс «Х» между теми числами-изоморфами, которые его порождают. После этого заметим, глядя на Рис.5, что незаполненные места можно заполнить такими же хитрыми индексами, если объединять уже не первые цифры чисел, а последние две цифры. Такими новыми индексами мы и дополним картинку, после чего вычислим нумерологические корни чисел – индексов.
Как можно убедиться по этой картинке, каждая индивидуальная расстановка (оцифровка) числами из набора чисел - изоморфов даёт новую информацию и позволяет выявлять – с какими числами корреспондируют исследуемые, а значит и Исходное Число. В частности, можно видеть, что знаменитая Хлебниковская константа 317 и столь же знаменитое число 137 входят в совершенно разные тройки чисел: (317, 173 и 731) или (137, 371 и 713), что означает их принадлежность к двум разным (если вообще не к противоположным – А.К.) закономерным подсистемам. В то же время числа 137 и 317 – системно взаимодополняющие числа! А вот «прямыми родственными» к числу 317 являются числа одной с ним тройки – 173 и 731. И такие цифры встречаются в исследованиях велимироведов. От себя могу добавить ещё ряд найденных числовых соотношений (в коллекцию велимироведов): е1/137 = (29:24)1/60
е = (318:317)317
ln(365/24 – 14) = 60:317
365:317 ~ 317:237 Последняя картинка (Рис.5) отличается исключительной сбалансированностью и симметрией, а нумерологические («хитрые») индексы позволили выявить неслучайность этой сбалансированности и принятой нами оцифровки. Выявление правильной оцифровки – важнейший момент такого рода исследований чисел, а поэтому я уделяю столь большое внимание примерам и способам построения лимбов (такого рода способами). А теперь составим сводную таблицу расчётных данных.
Результаты:
ЧТО ДАЮТ ТАКОГО РОДА ИССЛЕДОВАНИЯ?1. Вспомним ситуацию в начале любого числового исследования: В начале мы имеем какую-то константу и, в лучшем случае, способы её использования (с авторскими соображениями о её смысле). Всё! Больше у нас практически ничего не имеется. 2. Нам бы хотелось знать о новом числе больше, тем паче в рамках той системы (или систем), с которыми это число сопряжено. Но откуда всё это взять? 3. Ситуация с числами так и будет находиться в глухом логическом тупике, а поиски новых связей между числами так и будут случайными блужданиями, пока мы не поставим общую задачу «с головы – на ноги». 4. Мой вывод солидарен с прозрениями Велимира Хлебникова, который неоднократно демонстрировал принцип «топологии чисел»: нет разницы в том, какую размерность имеет в рамках его концепции число 317. Это может быть и число сонетов Петрарки и число поцелуев и параметры сдвигов материков. 5. Всё подчинено числам, а «ипостась» важных (системных) чисел может быть любой. Числа определяют события, а не наоборот. Числа – вехи и изгибы реки Времени, вот только не мы (люди) поставили туда эти вехи. По счастью мы только-только начали замечать их, как дети из окна поезда, идущего в будущее. А папа Хлебников очень долго вбивал нам это в голову: «Смотрите, детки, у этой реки только одна ткань – числа». Сколько же можно повторять? Ну, не лошади же мы! 6. У любых чисел есть своя внутренняя, скрытая от невооружённых глаз, тайная структура. Увидеть её мешает проклятая догма математики о том, что число, якобы, не имеет качественной определённости. А это – наглая ложь. Им просто так удобнее. Математики просто ленятся (или не способны!) заняться исследованиями в этой сфере. Достаточно сказать, что ещё во времена Пифагора люди знали около 60 разных свойств чисел! Отдельный вопрос – как (и по каким причинам?) общая математика отошла от правильного понимания природы чисел, как объектов Природы. И будущий анализ этого вопроса будет честным детективом! 7. Когда несколько цифр проставлены в той или иной последовательности в одном числе, то происходит взаимодействие внутренних сущностей этих цифр, которое всегда связано с ещё более фундаментальными числами, чем мы можем это себе представить. Всё это очень похоже на вопрос ребёнка к мудрому учителю. Ответ будет прост (чтобы ребёнок понял), но «кухня» формирования такого ответа – неизмеримо сложнее сознания ребёнка. Число – вершина айсберга таких фундаментальных закономерностей, в которые мы ещё даже не углублялись. 8. В результате нашего исследования мы увидели, что число 317 – простое число, но мы увидели также и то, что оно органично связано (в рамках системы чисел-изоморф) с целым сонмом других простых чисел. Разве это пустяк? Каков смысл этого? Почему именно таков набор связных простых чисел? Что за этим стоит? 9. Мы увидели, что совсем не безразлично - каким способом осуществлять оцифровки лимбов в избранной системе чисел. И каждая система чисел потребует своей оцифровки для выявления скрытой информации об участниках взаимодействия. 10. Мы увидели, что последовательное применение метода выявляет некоторые обобщающие числа. Например, сумма всех выявленных в ходе исследования простых чисел = 3333 (!??). Что это? Каков смысл этой «кругленькой» суммы? Как и где её можно применить? И разве можно это назвать случайностью? Нет, скорее это - образчик нашей слепоты и недостаточной образованности в сфере научного и прикладного числознания. 11. У автора, к сожалению, нет ответов на все вопросы. Зато есть намерение идти дальше в этом направлении. 12. Присоединяйтесь, господа исследователи и сотворцы, присоединяйтесь… |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||